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Abstract
The majority of risk loci identified by genome-wide association studies (GWAS) are in non-coding regions, hampering their 
functional interpretation. Instead, transcriptome-wide association studies (TWAS) identify gene-trait associations, which 
can be used to prioritize candidate genes in disease-relevant tissue(s). Here, we aimed to systematically identify susceptibil-
ity genes for coronary artery disease (CAD) by TWAS. We trained prediction models of nine CAD-relevant tissues using 
EpiXcan based on two genetics-of-gene-expression panels, the Stockholm-Tartu Atherosclerosis Reverse Network Engi-
neering Task (STARNET) and the Genotype-Tissue Expression (GTEx). Based on these prediction models, we imputed 
gene expression of respective tissues from individual-level genotype data on 37,997 CAD cases and 42,854 controls for the 
subsequent gene-trait association analysis. Transcriptome-wide significant association (i.e. P < 3.85e−6) was observed for 
114 genes. Of these, 96 resided within previously identified GWAS risk loci and 18 were novel. Stepwise analyses were 
performed to study their plausibility, biological function, and pathogenicity in CAD, including analyses for colocalization, 
damaging mutations, pathway enrichment, phenome-wide associations with human data and expression-traits correlations 
using mouse data. Finally, CRISPR/Cas9-based gene knockdown of two newly identified TWAS genes, RGS19 and KPTN, 
in a human hepatocyte cell line resulted in reduced secretion of APOB100 and lipids in the cell culture medium. Our CAD 
TWAS work (i) prioritized candidate causal genes at known GWAS loci, (ii) identified 18 novel genes to be associated with 
CAD, and iii) suggested potential tissues and pathways of action for these TWAS CAD genes.

Keywords Coronary artery disease · Transcriptome-wide association study · Genome-wide association study · Genetically 
regulated expression

Introduction

Coronary artery disease (CAD), a leading cause of prema-
ture death worldwide, is influenced by interactions of life-
style, environmental, and genetic risk factors [43]. Genome-
wide association studies (GWAS) have identified over 200 
risk loci for CAD [11, 17, 35]. Most of them are located in 
non-coding regions which hampers their functional interpre-
tation. Expression quantitative traits loci (eQTLs) to some 

extent explain the genomic effects of GWAS signals [19, 
61, 64]. By leveraging effects of multiple cis-eQTL variants 
on gene expression, transcriptome-wide association studies 
(TWAS) search primarily for gene-trait associations. The 
approach first builds on prediction models of gene expres-
sion from reference panels that correlate genotype patterns 
with transcript levels in tissues which are relevant for the 
phenotype. Prediction models are then used to impute 
tissue-specific gene expression based on genotypes with 
a given trait in individuals of GWAS cohorts [21]. Since 
TWAS signals reflect association between transcriptome-
wide genetically regulated expression (GReX) and traits or 
diseases, the approach can be used to prioritize candidate 
genes across disease-relevant tissues. Thereby, TWAS may 
point to causal genes at risk loci identified by GWAS and 
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thus provide further insights into biological mechanisms [62, 
70]. Moreover, TWAS increase the sensitivity to identify 
susceptibility genes missed by traditional GWAS analyses. 
Here we performed a TWAS to identify novel susceptibility 
genes for CAD comprising more than 80,000 individuals 
with genotype data along with validation and exploratory 
analyses for the associated genes.

Materials and methods

Prediction models of nine tissues based on two 
reference panels

The starting point of this investigation was two large human 
biobanks with individual-level data on genome-wide geno-
types as well as mRNA expression levels in multiple tissues 
with relevance for CAD. These include atherosclerotic aortic 
wall (AOR), atherosclerotic-lesion-free internal mammary 
artery (MAM), liver (LIV), blood (BLD), subcutaneous fat 
(SF), visceral abdominal fat (VAF), and skeletal muscle 
(SKLM) in the Stockholm-Tartu Atherosclerosis Reverse 
Network Engineering Task (STARNET) [20], and AOR, 
LIV, BLD, SF, VAF, and SKLM in the Genotype-Tissue 
Expression (GTEx) [1] (Supplementary Table 1). Arterial 
wall coronary (COR) and tibial artery (TIB) datasets were 
only available in the GTEx. The pipeline used for training 
prediction models was EpiXcan which was built on the basis 
of PrediXcan but with improved prediction performance by 
integrating epigenomic annotation data into model-training 
process [21, 70]. The samples used for training models were 
restricted to European ancestry. We adopted the existing 
expression prediction models established by Zhang except 
COR and TIB tissues which were not covered yet [70].

We established predictive models for COR and TIB tis-
sues using the same parameters as other tissues [70]. In 
brief, we first filtered the genotype and expression data of 
COR and TIB from GTEx v7 [1]. For genotype data, variants 
with call rate < 0.95, minor allele frequency (MAF) < 0.01, 
and Hardy Weinberg equilibrium (HWE) < 1e−6 were 
removed. For expression, we used quality-controlled data 
and performed sample-level quantile normalization and 
gene-level inverse quantile normalization using preproc-
ess codes of PredicDB pipeline [21]. We then calculated 
SNP priors using hierarchical Bayesian model (qtlBHM) 
[40] that jointly analyzed epigenome annotations of aorta 
derived from Roadmap Epigenomics Mapping Consortium 
(REMC) [5], and eQTL statistics. The SNP priors (Supple-
mentary Table 2), genotype data and expression data were 
jointly applied to tenfold cross-validated weighted elastic-
net to train prediction models [70].

Both STARNET- and GTEx-based models were fil-
tered by cross-validated prediction R2 > 0.01 [28, 68]. The 

summary statistics of sample sizes used for training models 
and the transcript numbers of genes covered by each predict-
ing model are shown in Supplementary Table 1.

GWAS cohorts

For the discovery cohort, individual-level genotyping data 
were collected from ten CAD GWAS, a subset of CARDIo-
GRAMplusC4D, including the German Myocardial Infarc-
tion Family Studies (GerMIFS) I–VII [16, 18, 38, 47, 48, 52, 
56], Wellcome Trust Case Control Consortium (WTCCC) 
[7], LURIC [65], and Myocardial Infarction Genetics Con-
sortium (MIGen) [2]. We used a part of individual-level data 
from UK Biobank (UKB) as the replication cohort [8], by 
extracting 20,310 CAD cases according to hospital episodes 
or death registries as reported and randomly selecting 25,000 
non-CAD participants as controls. The detailed information 
about selection criteria of case and control were described 
at elsewhere [38]. In total, genotypes of 37,997 cases and 
42,854 controls were included in our transcriptome-wide 
association studies (TWAS) of CAD (Supplementary 
Table 3). The preprocessing steps of genotyping data are as 
previously described [38].

TWAS analysis

The transcriptome-wide association analysis was performed 
using prediction models of nine tissues for imputing individ-
ual-level GReX from CAD cases and controls of 11 GWAS 
cohorts and by association of these tissue-specific GReX 
with CAD risk in each cohort. To test the replicability of 
TWAS results, we used ten GWAS cohorts as discovery set 
and UKB as the replication set to test replicability within 
STARNET- and GTEx-based models, respectively. We com-
pared the consistency of TWAS results between STARNET- 
and GTEx-based models of the six overlapping tissues using 
all genotype data. Then, we merged TWAS genes resulted 
from two reference-based panels as the final list. Finally, 
we annotated the TWAS genes list by over 200 CAD loci 
identified by GWASs [17, 35] using MAGMA [37]. Gene 
resided in the ± 1 Mb regions around known GWAS loci 
were marked as the known, otherwise genes were marked 
as the novel.

Colocalization of the eQTL and GWAS signals

Colocalization analysis was performed using COLOC, 
a Bayesian statistical methodology that takes GWAS and 
eQTL data as inputs, and tests the posterior probabilities 
of hypothesis #4 (PP4) that there are shared casual vari-
ants for each locus [23]. The summary statistics of GWAS 
meta-analysis were obtained from CARDIoGRAMplusC4D 
Consortium [47], and the eQTL data of nine tissues from 
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STARNET [20] and GTEx [1]. The significance threshold 
is PP4 > 0.55.

Co‑expression network for protein coding 
and lncRNA genes

We used RNA-seq data of STARNET [20] to calculate 
expression correlations between long non-coding RNA 
(lncRNA) genes and protein-coding genes in seven tissues. 
Co-expression pairs with absolute Pearson correlation coef-
ficient larger than 0.4 were considered to be significant. The 
co-expression network was displayed by cytoscape [34].

Gene set enrichment analyses

Pathway enrichment analysis was carried out using ClueGO 
(v2.5.2) [6], a plugin of cytoscape [34], based on collated 
gene sets from public databases including Gene Ontology 
(GO) [26], KEGG [30], Reactome [12], and WikiPathways 
[55]. Gene sets with false discovery rate (FDR) by right-
sided hypergeometric test less than 0.05 were considered to 
be significant.

Furthermore, we also studied the diseases or traits asso-
ciated with risk genes by performing disease enrichment 
analysis based on DisGeNET [50], the largest publicly avail-
able datasets of genes and variants association of human 
diseases. FDR < 0.05 was used for thresholding.

Rare damaging variants association analysis

To investigate association of damaging variants in TWAS 
genes with CAD, we used whole-exome sequencing (WES) 
data of 200,632 participants from UKB [27]. The WES 
data were processed following the Functional Equivalence 
(FE) protocol. We performed quality control on the WES 
data by filtering variants with calling rate < 0.9 and vari-
ants with HWE < 1e−6. For the relevant traits, besides CAD, 
we considered i) three lifestyle factors including body mass 
index (BMI), diabetes, hypertension; ii) seven categories 
of blood lipids including low-density lipoproteins choles-
terol (LDL-C), high density lipoproteins cholesterol (HDL-
C), apolipoprotein A (APOA), apolipoprotein B (APOB), 
Lipoprotein(a) (LPA), total cholesterol (TC) and triglycer-
ides (TG); iii) four inflammation related factors including 
C-reactive protein (CRP), lymphocyte count (Lymphocyte), 
monocyte count (Monocyte) and neutrophil count (Neutro-
phil). In total, 15 traits were studied.

We defined damaging variants as (i) MAF < 0.01; (ii) 
annotated into following one of the three classes: loss-
of-function (LoF) variants (stop-gained, splice site dis-
rupting, or frameshift variants), pathogenic variants in 
ClinVar [36], or missense variants predicted to be damag-
ing by one of five computer prediction algorithms (LRT 

score, MutationTaster, PolyPhen-2 HumDiv, PolyPhen-2 
HumVar, and SIFT). The Ensembl Variant Effect Predic-
tor (VEP) [45] and its plugin loftee [31], and annotation 
databases dbNSFP 4.1a [14] and ClinVar (GRCh38) [36] 
were used for annotating damaging mutations.

For each analysis, samples were classified into carri-
ers or noncarriers of the gene’s damaging mutations. For 
binary traits, we used Fisher’s exact test to check if there 
was incidence difference of mutation carrying between 
case and controls. For the quantitative traits, we used lin-
ear regression model with adjustments of sex, first five 
principal components, and lipid medication status to 
investigate the associations between mutation carrying 
status and traits. We used nominal significance threshold 
(P < 0.05), given that coding variants are rather rare, and 
the case–control sample sizes were not balanced which 
might increase false negative rate.

Association of variants in novel genes with lipid 
traits

For 18 novel risk genes, we performed association analysis 
for variants located in respective loci (± 1 Mb) with lipid 
traits using genotyping data of UKB. The lipid traits include 
levels of LDL-C, HDL-C, APOA, APOB, LPA, TC, and TG. 
The variants were filtered by MAF > 0.01, and imputation 
info score > 0.4. The association test was performed using 
PLINK2 [10] with adjustment of sex, age, first five principal 
components, and lipid medication status. The numbers of 
independent SNPs were estimated using Genetic type 1 error 
calculator (GEC) tool [39].

Expression‑trait association study using mouse data

The hybrid mouse diversity panel (HMDP) is a set of 105 
well-characterized inbred mouse strains on a 50% C57BL/6J 
genetic background [42]. To specifically study atheroscle-
rosis in the HMDP, transgene implementation of human 
APOE-Leiden and cholesteryl ester transfer protein was 
performed, promoting distinct atherosclerotic lesion forma-
tion [4]. A Western diet containing 1% cholesterol was fed 
for 16 weeks. Subsequently, gene expression was quantified 
in aorta and liver of these mice and lesion size was assessed 
in the proximal aorta using oil red O staining. Fourteen other 
related traits were measured too, including liver fibrosed 
area, body weight, TC, VLDL-C (very low-density lipopro-
tein cholesterol) + LDL-C, HDL-C, TGs, unesterified cho-
lesterol, free fatty acid (FFA), Il-1b, Il-6, Tnfa, Mcp-1, and 
M-csf. From HMDP, we extracted significant association 
pairs between TWAS genes and 15 risk traits by applying 
significance P < 0.05.
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Experimental validation of KPTN and RGS19 
in human cells

To knock down KPTN and RGS19, two sgRNAs target-
ing shared exons of all transcription isoforms were deliv-
ered by lentivirus into a Cas9-expression huh7, a human 
hepatoma cell line. Exon 4 of KPTN and exon 5 of RGS19 
were targeted by a dual CRISPR strategy to create a 40 bp 
and 130 bp frame shift deletion, respectively. SgRNAs were 
carried by Lenti-Guide-Puro vector (addgene, #52963) and 
infected cells were treated with 10 ug/ml puromycin treat-
ment for 3 days to eliminate the negative cell. Positive tar-
geted cells were expanded in culture and passaged for assays. 
Cells for measurement of secretive triglycerides, cholesterol, 
and APOB100 were cultured for 16 h in serum-free medium. 
Medium triglycerides and cholesterol were enriched for five 
times by vacuum centrifuge and measured with colorimetric 
kits, triglyceride (cobas), and CHOL2 (cobas), respectively. 
The amount of medium APOB100 was measured with an 
ELISA kit (MABTECH).

RNA isolation and sequencing

Total RNA from huh7 cells was isolated using RNEasy Plus 
Mini Kit (Qiagen) (control cells, n = 3; knockout cells, n = 3). 
Quantity and quality of the isolated RNAs were measured by 
Fragment Analyzer (Agilent). RNA sequencing (RNA-seq) 
was performed by BGI TECH SOLUTIONS (HONGKONG) 
using strand specific library preparation with mRNA enrich-
ment, paired-end sequencing with 100 bp read length on the 
DNBSEQ platform and 20 M clean read pairs per sample. 
Clean reads were mapped onto the GRCh38.p12. Expression 
quantifications, differential expression, and gene set enrich-
ment were performed according to BGI RNA-seq pipeline.

Results

Transcriptome‑wide significant genes for CAD

The study design is shown in Fig. 1. Expression predic-
tion models of nine tissues were derived from two refer-
ence panels, STARNET [20] and GTEx [1], using EpiXcan 
pipeline [70] (Materials and methods). We applied these 
models to impute transcriptome-wide GReX of nine tissues 
from individual-level genotype data of 11 GWAS cohorts 
(Supplementary materials; Supplementary Fig. 1–2; Sup-
plementary Tables 1–3) [2, 7, 8, 16, 18, 38, 47, 52, 56, 65]. 
We next associated the GReX with CAD risk in each cohort 
(Supplementary materials). The results revealed replica-
bility of TWAS genes when taking ten CARDIoGRAM-
plusC4D cohorts as discovery and UKB as replication set 
within the STARNET- and GTEx-based prediction models, 

respectively (Supplementary Fig. 2I–II; Supplementary 
Fig. 3). The results also showed consistency and comple-
mentarity of TWAS findings in six shared tissues between 
two reference-based prediction models (Supplementary 
Fig. 2III–IV; Supplementary Figs. 4–5). Therefore, we com-
bined the results based on the two reference models for the 
final list of TWAS genes (Supplementary Fig. 2 V).

From STARNET-based models 129 gene-tissues pairs 
and from GTEx-based models 106 gene-tissue pairs were 
significantly associated with CAD (Bonferroni-corrected 
significance based on 12,995 genes, P < 3.85e−6). Since 42 
pairs overlapped between the two panels (Supplementary 
Fig. 5), the total number of gene-tissue pairs was 193. Given 
that some genes displayed association in multiple tissues, the 
final list of significant TWAS genes for CAD was 114 genes 
(Fig. 2; Supplementary Fig. 6; Supplementary Table 4). Of 
these, 95 gene-tissue association pairs were confirmed using 
another commonly used fine-mapping tool (COLOC) [23] 
with posterior probabilities of shared causal variants in each 
locus larger than 0.55 (PP4 > 0.55; Materials and methods; 
Supplementary Table 5; Supplementary Fig. 7).

Of the 114 TWAS genes, 46 genes displayed genetically 
mediated differential expression in AOR, 28 in MAM, 25 in 
LIV, 23 in VAF, 22 in SKLM, 18 in SF, 16 in BLD, 10 in 
TIB, and 5 in COR (Fig. 3a). Most genes revealed significant 
associations in only a single tissue; 38 were significant in 
more than one, almost all having consistent directions of 
association between predicted expression levels and CAD 
across tissues (Fig. 3b).

Among the 114 genes, 102 were protein-coding and 12 
were lnRNA genes (Supplementary Table 4). The STAR-
NET data showed that most lncRNAs were positively co-
expressed with a surrounding gene in affected tissues (Sup-
plementary Fig. 8). LINC00310 was the only exception, 
which displayed complex co-expression patterns with other 
genes.

Respective genes were found in 63 genomic regions, thus 
several regions represented multiple genes with significant 
associations. Six regions had multiple TWAS genes with 
shared GWAS and eQTL signals in respective tissues, like 
1p13.3 and 2p33.2 (Supplementary Figs. 9–10; Supplemen-
tary Table 5). On the other hand, in 39 regions expression 
of only a single gene was found to be significantly associ-
ated, which makes these genes likely candidates for mediat-
ing causal effects, particularly, if these genes reside within 
GWAS risk loci for CAD (these genes are indicated in Sup-
plementary Table 6).

Most TWAS genes (n = 96) could be positionally 
annotated to the 1 Mb region around one of the over 200 
GWAS loci that are currently known to be genome-wide 
significantly associated with CAD [11, 17, 35]. There-
fore, we marked these as known genes (Supplementary 
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Table 6). On the other hand, 18 genes resided outside of 
these regions and were labeled as novel genes (Table 1). 
Most novel genes were tissue-specific, except RGS19, 
FAM114A1 and UFL1 which displayed evidence for dif-
ferential expression in multiple tissues.

Pathways and diseases enriched by TWAS genes

We carried out two types of gene set enrichment tests to 
further study the biological relevance of genes giving sig-
nals in this TWAS. First, we studied disease-gene sets from 
the DisGeNET platform which is one of the largest publicly 

Step 1: Training expression prediction models

Step 3: Transcriptome-wide association analysis

114 TWAS genes assocatied with CAD
(96 known, 18 novel)

Colocalization analysis
• GWAS:
CARDIoGRAMplusC4D
Consortium

• eQTL: STARNET and GTEx
• the posterior
probabilities (PP4)≥0.55

Associations between
damagingvariants in
TWAS genes and CAD and
its risk traits (UKB)

Gene set enrichment:
• Gene-disease associations
(DisGeNET)

• Pathways

Variant-trait associations
in human genotype data
(UKB)

Expression-trait
associations in
atherosclerosis mouse
model (HMDP)

Gene knockouts of KPTN
and RGS19 in huh7
hepatocytes

GTEx
genotype and expression data of 8 tissues

STARNET
genotype and expression data of 7

tissues

CARDIoGRAMplusC4D
10 studies (17,687 CAD and 17,854

controls)

UKB
(20,310 CAD and 25,000 controls)

Prediction models of 9 tissues

Step 5: Susceptibility of novel genes

Step 2: Imputing genetically regulated expression from 11 GWAS cohorts

Step 4: Plausibility, biological function and pathogenicity of TWAS genes

Fig. 1  The study design. Step 1, we trained prediction models using 
EpiXcan from two eQTL panels, the Stockholm-Tartu Atherosclero-
sis Reverse Network Engineering Task (STARNET) and the Geno-
type-Tissue Expression (GTEx) for nine tissues. Step 2, the predic-
tion models were applied to impute genetically regulated expression 
(GReX) from individual-level genotype data of ten CARDIoGRAM-
plusC4D sets and UK Biobank (UKB). Step 3, we associated tran-
scriptome-wide GReX with risk of coronary artery disease (CAD) 
(Supplementary Results) and identified 114 transcriptome-wide sig-
nificant genes (TWAS genes). Of these, 96 resided within genome-
wide significant (GWAS) loci and 18 outside of known GWAS loci 

(novel genes). Step 4, we tested the plausibility of novel TWAS genes 
by conducting colocalization analysis and studying effects of damag-
ing mutations, as well as gene set enrichment analyses. Step 5, we 
explored potential mechanisms of novel genes by testing association 
with risk traits of CAD in human genotype data of UKB, and asso-
ciation between expressions and risk traits of CAD in atherosclero-
sis mouse models from the Hybrid Mouse Diversity Panel (HMDP). 
Lastly, we carried out CRISPR/Cas9-based knockdown experiment 
for two novel genes RGS19 and KPTN in human hepatocyte cell lines 
to experimentally validate related functions
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available collections of genes and variants associated with 
human diseases [50]. The results showed that genes discov-
ered by TWAS were primarily enriched for CAD, coronary 

atherosclerosis, and hypercholesterolemia (Supplementary 
Table 7), adding to the plausibility of our TWAS findings.

Fig. 2  Manhattan plot of CAD TWAS results. The association results 
from STARNET- and GTEx-based models were integrated by lowest 
P values. The blue line marks P = 3.85e−6, i.e. transcriptome-wide 
significance. Each point corresponds to an association test between 
gene-tissue pair. 18 novel TWAS genes were highlighted. Supplemen-
tary Fig.  6 identifies all genes identified by their genetically-modu-

lated association signals. The color code identifies the tissue in which 
the genes were differentially expressed by genetic means: AOR aorta, 
COR coronary artery, MAM mammary artery, BLD blood, LIV liver, 
SF subcutaneous fat, VAF visceral abdominal fat, SKLM skeletal 
muscle

Fig. 3  Tissue distribution of 114 TWAS genes of CAD. a Number 
of transcriptome-wide significant genes across tissues. b Heatmap 
plot of 38 genes identified in more than one tissues. The color codes 
indicate direction of effects. Cells marked with * represent significant 

gene-tissue pairs (P < 3.85e−6). AOR aorta, COR coronary artery, 
MAM mammary artery, BLD blood, LIV liver, SF subcutaneous fat, 
VAF visceral abdominal fat, SKLM skeletal muscle, TIB tibial artery
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In line with these results, gene set enrichment analysis 
based on GO [26], KEGG [30], Reactome [12], and WikiP-
athways [55] databases showed that the TWAS genes were 
highly enriched for pathways involved in cholesterol metabo-
lism and regulation of lipoprotein levels. To a lesser extent, 
risk genes were enriched in regulation of blood pressure as 
well as development and morphogenesis of the heart and the 
aortic valve (Supplementary Table 8).

Effects of damaging variants in TWAS genes

We next searched in exome-sequencing data of 200,643 par-
ticipants from UKB for rare damaging variants in TWAS 
genes (either loss-of-function mutations or mutations pre-
dicted to be adverse by one of five in-silico methods, allele 
frequency < 0.01) (Materials and methods). In 97 genes we 
detected such variants. Expectedly these damaging muta-
tions were very rare which limits the power of gene-based 
burden tests to observe association with risk of CAD or 
one of 14 CAD-related cardiometabolic traits we tested (15 

traits in total). Nevertheless, associations of eight genes 
with risk traits reached Bonferroni-corrected significance 
(P < 3.44e−5; 0.05/97genes × 15traits) (Fig. 4; Supplemen-
tary Tables 9–10). Mutations of lipoprotein lipase (LPL), 
a critical regulator of lipid metabolism [29, 60], were evi-
dently associated with lipid traits, including levels of HDL-C 
(beta = − 0.106; P = 4.54e−68), APOA (beta = − 0.062; 
P = 6.25e−47), APOB (beta = 0.025; P = 1.38e−12), and 
TG (beta = 0.241; P = 1.47e−68). ABCG5, encoding a 
sterol transfer protein [69], was associated with LDL-C 
(beta = 0.12; P = 3.66e−10), TC (beta = 0.16; P = 8.63e−10). 
PCSK9, a drug target for cholesterol lowering [13], was asso-
ciated with LDL-C (beta = − 0.01; P = 4.29e−7) and APOB 
(beta = − 0.03; P = 4.4e−10). A mutation of SARS was asso-
ciated with APOB (beta = − 0.02; P = 5.92e−7), MAT2A 
with lymphocyte counts (beta = 1.34; P = 3.41E−28), 
and JCAD (odds ratio [OR] = 1.31; 95% confidence inter-
val [CI] 1.18–1.46; P = 5.77e−7) as well as ARHGAP42 
(OR = 2.08; 95% CI 1.65–2.59; P = 2.22e−9) were asso-
ciated with risk of diabetes. We also observed nominally 

Table 1  18 TWAS genes 
residing outside of published 
GWAS loci

TWAS transcriptome-wide association study, STARNET the Stockholm-Tartu Atherosclerosis Reverse Net-
work Engineering panel, GTEx the Genotype-Tissue Expression panel, AOR aorta, COR coronary artery, 
MAM mammary artery, BLD blood, LIV liver, SF subcutaneous fat, VAF visceral abdominal fat, SKLM 
skeletal muscle
a Association statistics from either STARNET- or GTEx-based models

Cytoband Gene Tissue Z score SE P value Froma

2p22.3 NLRC4 LIV − 3.383 0.044 3.04E−06 STARNET
3q21.3 TXNRD3 VAF 2.566 0.059 1.36E−06 STARNET
4p14 FAM114A1 VAF 4.026 0.050 3.44E−09 GTEx
4p14 FAM114A1 BLD 4.845 0.037 1.80E−06 GTEx
5p13.2 EGFLAM COR 5.596 0.047 7.70E−10 GTEx
6q16.1 UFL1 MAM − 5.246 0.038 1.62E−06 STARNET
6q16.1 UFL1 BLD − 4.687 0.038 8.70E−05 STARNET
6q16.1 UFL1 BLD − 4.955 0.042 3.96E−07 GTEx
6q21 WASF1 SF 4.320 0.059 1.91E−06 STARNET
6q25.3 EZR LIV − 3.187 0.025 3.53E−06 STARNET
9p21.3 FOCAD VAF 8.348 0.068 1.44E−12 GTEx
9q34.3 SDCCAG3 SKLM − 3.015 0.061 1.74E−06 STARNET
12p11.21 TSPAN11 VAF 2.285 0.065 1.79E−07 STARNET
12p12.3 MGP SF − 3.412 0.040 5.67E−07 GTEx
12q14.3 CAND1 VAF − 2.355 0.030 1.19E−07 GTEx
16p11.2 STX4 COR 3.347 0.056 2.59E−06 GTEx
16q22.1 WWP2 AOR 4.491 0.029 5.67E−06 STARNET
16q22.1 WWP2 AOR 6.570 0.031 1.19E−07 GTEx
16q24.3 GAS8 LIV 0.189 0.041 8.32E−07 GTEx
19p13.11 HOMER3 SKLM 4.647 0.030 3.52E−08 GTEx
19q13.32 KPTN LIV − 3.076 0.076 2.17E−06 STARNET
20q13.33 RGS19 LIV − 4.913 0.028 1.52E−06 GTEx
20q13.33 RGS19 VAF − 4.545 0.030 4.63E− 07 GTEx
20q13.33 RGS19 SKLM − 5.026 0.024 1.42E−06 STARNET
20q13.33 RGS19 SKLM − 5.298 0.018 9.29E−07 GTEx
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significant associations of several genes with CAD: LPL [29, 
60] (OR = 1.168; CI 1.034–1.036; P = 0.016), NOS3 [15] 
(OR = 1.143; 95% CI 1.109–1.279; P = 0.02), and ADAMTS7 
[32] (OR = 1.062; 95% CI 1.011–1.115; P = 0.016) (Supple-
mentary Tables 9–10).

Novel genes associated with risk factors in human 
and mouse data

We next associated single nucleotide polymorphisms (SNPs) 
in the regions of ± 1 Mb around the 18 novel TWAS genes 
to study their associations with a series of lipid traits includ-
ing LDL-C, HDL-C, APOA, APOB, LPA, TC, and TG in 
UKB (Materials and methods). There were 883 independent 
SNPs estimated by GEC. Bonferroni-corrected significance 
P < 8.09e−6 (0.05/883 × 7 lipid traits) was observed for 
numerous respective lead variants, of which RGS19, SDC-
CAG3, EZR, HOMER3, and WWP2 reached genome-wide 
significant association (P < 5e−8) with multiple lipid traits 
(Fig. 5a; Supplementary Table 11).

Next, we extracted expression-trait association statis-
tics of TWAS genes from HMDP, which brings together 
genotypes and expression data from atherosclerosis mouse 
models [42]. Based on the expression data from mouse 
aorta and liver tissues, 55 TWAS genes were significantly 
associated with aortic lesion area and 14 further cardiovas-
cular traits (P < 0.05; Supplementary Table 12). Expression 
levels of seven novel genes, i.e. Rgs19, Kptn, Ezr, Stx4a, 
Cand1, Focad, and Wasf1, were associated with aortic lesion 

Fig. 4  Effects of damaging variants in TWAS genes on CAD and its 
risk traits. Sign(beta)*−log10(p) displays direction and significance 
of gene-trait associations. When the Sign(beta)*−log10(P) > 8, they 
were trimmed to 8. The gene-trait association pairs reached Bonfer-
roni-significance P < 3.44e−5 were highlighted in box. CAD coronary 
artery disease, LDL-C low-density lipoproteins cholesterol, VLDL-C 
very low-density lipoprotein cholesterol, HDL-C high density lipo-
proteins cholesterol, APOA apolipoprotein A, APOB apolipoprotein 
B, TC total cholesterol, TG triglycerides, CRP C-reactive protein, 
BMI body mass index

Fig. 5  Novel risk genes were 
associated with lipid traits. a 
Data from UK Biobank (UKB) 
indicated that lead variants 
inside the boundary of risk 
genes were associated with 
lipid traits with Bonferroni-
corrected significance levels 
(*P < 8.09e−6), or by genome-
wide significance (**P < 5e−8). 
b Expression levels of novel 
genes were likewise associ-
ated with lipid traits and aortic 
lesion area in an atherosclerosis 
mouse model from the hybrid 
mouse diversity panel (HMDP). 
*P < 0.05; **FDR < 0.05. 
LDL-C low-density lipopro-
teins cholesterol, VLDL-C 
very low-density lipoprotein 
cholesterol, HDL-C high 
density lipoproteins cholesterol, 
APOA apolipoprotein A, APOB 
apolipoprotein B, TC total cho-
lesterol, TG triglycerides, FFA 
free fatty acid



Basic Research in Cardiology           (2022) 117:6  

1 3

Page 9 of 20     6 

area (Fig. 5b), a commonly used measure for atheroscle-
rotic plaque formation in mice. Additionally, we found the 
novel genes were associated with at least one lipid trait in 
the mouse model.

Knockdown of RGS19 and KPTN in human liver cells

Potential functional implications of all novel genes, based on 
the literature, are summarized in Supplementary Table 13. 
We additionally aimed to validate two exemplary novel 
TWAS genes by in vitro studies. Based on the above in-
silico annotations we focused these studies on novel genes 
identified in liver with potential effects on lipids, the top risk 
factor for CAD (Fig. 5). Among the five genes identified 
in liver including NLRC4, EZR, GAS8, KPTN, and RGS19, 
the last two were, not only the least studied but also associ-
ated with nearly a full spectrum of lipid traits in human or 
mouse data (Fig. 5). In addition, both KPTN and RGS19 are 
indeed expressed in hepatocyte (Supplementary Fig. 11a, 
b). Finally, both KPTN and RGS19 are located within lipid 

loci identified recently in more than one million individuals 
[24]. Therefore, we decided to test the influence of KPTN 
and RGS19 on lipid metabolism of liver cells.

We generated gene knockout (KO) huh7 cell lines by a 
dual CRISPR strategy (Materials and methods), which sub-
stantially reduced expression of the respective genes (Sup-
plementary Fig. 11c, d). We measured secretion levels of 
TG, cholesterol and APOB in gene-targeted versus control 
cells. Notably, under normal circumstances, human hepato-
cytes synthesize cholesterol, assemble TG and APOB100, 
and secrete these particles in form of VLDL-C [58]. Com-
pared to control huh7 cells, we found reduced APOB and 
cholesterol levels in culture medium of KPTN-KO cells 
(Fig. 6a, c). In culture medium of RGS19-KO cells we also 
detected reduced levels of APOB100, cholesterol, and TG 
(Fig. 6b, c), in line with strong associations of this gene with 
an array of lipid traits in both human genotyping and mouse 
expression data sets (Fig. 5).

We further corroborated our experimental results by 
performing RNA sequencing (RNA-seq) on KPTN-KO and 

c
APOB100CholesterolTriglyceride

CTRKP
TN
-KO

Ladder (bp)

200

100

Edited band 
(143bp)

Wt band 
(183bp)

RG
S19

-KO

300

Ladder (bp)

200

CTR

Wt band 
(279bp)

Edited band 
(149bp)

40bp

183bp

KPTN-exon4

Dual-
CRISPRs

vR-PwF-P

130bp

279bp

RGS19-exon5

Dual-
CRISPRs

vR-PwF-P

ba

Fig. 6  Targeting of KPTN and RGS19 reduced lipids and APOB 
secretion of human liver cells. a Two sgRNAs were used to target the 
exon4 of KPTN (shared exon among isoforms) in a Cas9-expressing 
huh7 liver cell line. The dual CRISPR strategy created a 40 bp frame 
shift deletion in the gene and profound reduction of KPTN at both 
mRNA and protein levels (Supplementary Fig. 11c, d). The primers 
(P-Fw and P-Rv) used for analyzing the CRISPR editing as indicated. 
b The same strategy was used for RGS19 targeting, which resulted in 

a 130  bp frame shift deletion in the gene, and reduction of mRNA 
and protein (Supplementary Fig. 11c, d). c Reduced triglyceride and 
cholesterol levels in knockout (KO) cell lines were detected by col-
orimetric method and APOB100 secretion was measured by human 
APOB100 Elisa (n = 6). Triglyceride, cholesterol, and APOB100 lev-
els were normalized to total protein and compared between the KO 
and control (CTR) cell lines
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RGS19-KO hepatocytes. In comparison to control cells, 
dysregulated genes in KPTN-KO and RGS19-KO hepato-
cytes (P < 0.05; Supplementary Tables 14–15) were indeed 
enriched for lipid metabolism (Supplementary Fig. 12). For 
KPTN-KO hepatocytes, the top four significantly enriched 
pathways plausibly contribute to CAD risk. Pathways ranked 
1 and 3, ‘regulation of cholesterol esterification’ and ‘LDL 
particle remodeling’, strongly suggested that KPTN can 
affect CAD risk via cholesterol metabolism (Supplementary 
Fig. 12a, b). For RGS19-KO hepatocytes, the dysregulated 
genes were enriched for both cholesterol and triglycerides 
metabolisms (Supplementary Fig. 12c, d) and eight of the 
top ten significant enriched pathways were related to lipid 
metabolism, consistent with the reduced secretion of choles-
terol and triglyceride of RGS19-KO cells (Fig. 6c).

Discussion

In a stepwise approach, we first generated models which 
allow to predict gene expression based on genotypes in nine 
tissues. Next, we applied these models to individual-level 
genotype data on more than 80,000 CAD cases and controls 
to perform a transcriptome-wide association analysis. We 
identified 114 genes with differential expression by genetic 
means in CAD patients. Many signals were highly plau-
sible as they resided within loci displaying genome-wide 
significant association with CAD by traditional GWAS. By 
in-silico analyses, these genes were markedly enriched in 
established pathways for the disease. Moreover, damaging 
variants in these genes showed association with CAD risk 
or its underlying traits in whole exome sequencing data from 
UKB. Importantly, we also identified 18 genes without prior 
evidence for their involvement in CAD by GWAS, many of 
which were found to be associated with lipid metabolism in 
human and mouse data.

Only a minority of genes residing within published CAD 
GWAS loci have been validated experimentally for their 
underlying causal role in atherosclerosis. Our data provide 
a substantial step towards prioritization of genes at respec-
tive GWAS loci [17, 35], because the TWAS association 
finding is based on expression levels of specific genes in 
defined tissues. In this respect, 46 genes identified by this 
TWAS are known for effects in pathophysiological pathways 
related to CAD, including lipid metabolism, inflammation, 
angiogenesis, transcriptional regulation, cell proliferation, 
NO signaling, and high blood pressure, to name a few (Sup-
plementary Table 6), giving credibility to the association 
findings.

Interestingly, our TWAS uncovered eight novel gene-
CAD associations in fat tissue, including MGP and WASF1 
in SF, and CAND1, FAM114A1, FOCAD, RGS19, TSPAN11, 
and TXNRD3 in VAF, representing half of the novel genes. 

All these genes also showed significant association with 
multiple lipid traits in a mouse atherosclerosis model 
(Fig. 5b). Given many CAD patients that are overweight 
or obese, it will be of great interest to identify how these 
genes modify cardiometabolic traits leading to cardiovascu-
lar disorders. In this respect our TWAS could provide a list 
of candidate genes and related targetable cardiometabolic 
traits. In addition, it is of surprise to unveil 22 genes linking 
SKLM to CAD risk, and eight were unique to this tissue, 
including HOMER3, SDCCAG3, MTAP, NME9, PSMA4, 
SLC2A12, UNC119B, and VAMP5, the first two being novel. 
SDCCAG3 or ENTR1 encodes endosome associated traffick-
ing regulator 1 and involves in recycling of GLUT1 (glucose 
transporter type 1), supplying the major energy source for 
muscle contraction. SKLM-based metabolism may have a 
protective role in CAD as suggested by the many cardio-
protective effects of sports [44, 54]. Gene targets enhancing 
SKLM function in this respect might be effective in CAD 
prevention, a field relatively unexplored thus far. Here, for 
the first time, quantitative traits regulated genes in SKLM 
were associated with CAD by TWAS, providing novel evi-
dence for genes that could modulate CAD risk by their func-
tions in SKLM.

Many novel TWAS genes revealed association with lipid 
traits in both genotype-trait data of human biobank and 
expression-trait data of atherosclerosis mouse model. For 
example, KPTN and RGS19, both novel genes displaying sig-
nificant TWAS results for CAD—based on their genetically-
modulated expression profiles of liver tissue—also showed 
significant association with various lipid traits as well as 
aortic lesion area in the atherosclerosis mouse model. More-
over, both gene loci harbor SNPs which are significantly 
associated with several lipids including LDL-C, HDL-C, 
TC, and/or TG in human genotype data. Based on these 
observations, we functionally validated the roles of these 
two novel genes by studying lipid levels in human liver cells, 
i.e. the tissue that displayed evidence for differential expres-
sion by TWAS. Indeed, we observed that knockout of the 
two genes lowered secretion of APOB and lipids into culture 
medium. KPTN, kaptin (actin binding protein), a member of 
the KPTN, ITFG2, C12orf66, and SZT2 (KICSTOR) protein 
complex, is a lysosome-associated negative regulator of the 
mechanistic target of rapamycin complex 1 (mTORC1) sign-
aling [67]. By investigating dysregulated genes of KPTN-KO 
hepatocytes, we found many genes of mTORC1 pathway to 
be upregulated (Supplementary Fig. 12b), including a subu-
nit of mTORC1, namely, MLST8 (MTOR associated protein, 
LST8 Homolog). Interestingly, many lysosome genes were 
also significantly upregulated including LAMP1 (lysosomal 
associated membrane protein 1), ACP2 (acid phosphatase 2, 
lysosomal), AP1B1 (adaptor related protein complex 1 subu-
nit beta 1), ATP6V0C (ATPase H+ transporting V0 subunit 
c), CTNS (cystinosin, lysosomal cystine transporter), CTSA 
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(cathepsin A), and CLTB (clathrin light chain B). Lysosomes 
promote lipid catabolism and transport, and maintain cel-
lular lipid homeostasis [57]. Activated mTORC1 located 
on lysosome membrane [67], acts as a sensor of lysosomal 
lipids [57], such as cholesterol and phosphatidic acid, which 
exert as building block for cellular and subcellular mem-
brane system. In fact, cholesterol mediates mTORC1 activa-
tion at the lysosome [9]. The interaction of mTORC1 and 
lysosome may promote lipid-sensing and lipid-trafficking to 
support the function of other subcellular organelles [46, 57]. 
These results hint the enhanced cellular usage of cholesterol 
via mTOR-lysosome axis in KPTN-KO hepatocytes. In addi-
tion, several lipoprotein genes were downregulated as well, 
including APOA1, APOA2, APOA4, and APOB. Both pro-
cesses might contribute to the reduced cholesterol secretion 
and the association with CAD.

RGS19 belongs to the RGS (regulators of G-protein sign-
aling) family, who are regulators for G-protein-coupled 
receptors (GPCRs) [49]. RGS19 inhibits GPCR signal trans-
duction by increasing the GTPase activity of G-protein alpha 
subunits, thereby transforming them into an inactive GDP-
bound form [53, 59]. The targeting GPCR of RGS19 has not 
been observed before, and how RGS19 regulates lipid metab-
olism remains unclear. The RGS19 locus was first reported to 
be associated with TC and TG in 2017 [33, 41]. We observed 
significant association of this gene with CAD and function-
ally validated its role in TG and cholesterol secretion. A 
potential mechanism could be related to PPARα pathway 
that regulates the expression of genes involving hepatic lipo-
genesis and lipid storage [63, 66]. PPARα also regulates cho-
lesterol, bile acid homeostasis, and sphingolipid metabolism 
in the liver [22]. Many genes in PPARα pathway were sig-
nificantly downregulated in RGS19-KO hepatocytes, includ-
ing FABP1 (also known as liver fatty acid binding protein), 
PLTP (phospholipid transfer protein), APOA1, APOA2, and 
APOC3 (Supplementary Fig. 12d). RGS19 is a regulator 
for G-protein-coupled receptors (GPCR). Interestingly, we 
found six dysregulated GPCRs in RGS19-KO hepatocytes, 
including, ADGRL2, CELSR1, ADGRV1, OXER1, LGR5, 
and LGR4 (Supplementary Fig. 12d). Furthermore, one of 
them, OXER1, an activator PPARα [51], was also downregu-
lated in RGS19-KO cells. All in all, one hypothesis could be 
that RGS19 associated GPCR signaling affects the PPARα 
pathway, and thereby lipid metabolism and CAD risk. Previ-
ous and current studies concordantly suggest from different 
angles that RGS19 has a role in lipid metabolism and our 
data further indicate that this function might meditate its 
effects on CAD risk.

There are certain limitations in our study. First, we 
observed that about 15% of gene-tissue pairs displayed 
some degree of heterogeneity in the association findings 
with CAD risk across the cohorts (Supplementary Table 4). 
While this number is relatively low and likely result from 

a play of chance when association findings are being com-
pared across individuals with relatively small case–control 
samples, it might also indicate some degree of population 
specific effects within European ancestries from UK, Ger-
many, France, and Italy. Second, since TWAS are strongly 
dependent on the reference panel linking genetic signatures 
with gene expression, it had to be expected that STARNET- 
and GTEx-based predictive models display some differences 
in gene-CAD associations. STARNET-based TWAS iden-
tified 129 gene-tissue pairs, whereas GTEx-based TWAS 
identified 106 gene-tissue pairs. Yet, 42 gene-tissue pairs 
were shared between the two analyses, and effect sizes for 
the shared genes were highly concordant (ρ = 0.97). An aver-
age of 62% overlapping genes was observed in the matched 
tissues of two reference-based models, and the resulting size 
of expression-CAD associations was linearly consistent with 
an average ρ = 0.72. The relatively small differences may 
be due to different sample sizes used for training predictive 
models [70], different disease states (subjects with and with-
out CAD), intravital (STARNET) or post mortem (GTEx) 
sample collection, as well as different transcript abundance 
and genotype coverage leading to differences in expression 
associated SNPs in our reference panels [20, 25]. Given a 
fair consistency between the two data sources, we combined 
results derived from both panels to increase the power for 
capturing risk genes. Third, although TWAS facilitates can-
didate risk gene prioritization, co-regulation or co-expres-
sion in cis at a given locus limits the precise determination 
of the culprit gene [62]. Indeed, at 12 loci we observed sig-
nals for three or more TWAS genes. For instance, in LIV 
tissue TWAS identified five genes at 1p13.3, ATXN7L2, 
CELSR2, PSMA5, PSRC1, SARS, and SORT1 which were 
co-regulated by same risk variant set, confusing prioritiza-
tion of the causal gene. While CELSR2, PSRC1, and SORT1 
were previously shown to act on lipid metabolism [3], we 
found that damaging mutations in SARS were also associated 
with serum levels of HDL-C and APOA. Thus, a combined 
effects of some or all genes at this locus may contribute 
to the association signal. In addition, all lncRNA genes 
identified by our study displayed co-expression with their 
neighboring coding genes, which makes it difficult to deter-
mine their casual effects. Nevertheless, in combining TWAS 
data with other genetic analyses, e.g. effects of damaging 
mutations, genetic association with other phenotypes and 
expression-traits association statistics, we aimed to improve 
risk gene prioritization, and to provide deeper insights of 
possible disease-causing mechanisms. For instance, LPL is 
well-known for its protective role against CAD by lower-
ing lipids [29, 60], and our analyses showed that damaging 
LPL mutations were associated with higher lipid levels. Last, 
as with all statistical methods, there are certain limitations 
and assumptions associated with TWAS. Further evolution 
and improvement of these methods, as well as functional 
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validation experiments, will assuredly improve the accuracy 
of these studies.

In summary, our TWAS study based on two genetics-of-
gene-expression panels identified 114 gene expression-CAD 
associations, of which 18 were novel. The extended analyses 
with multiple datasets supported the reliability of the CAD 
TWAS signals in prioritizing candidate risk genes and iden-
tifying novel associations in a tissue-specific manner. Func-
tional validation of two novel genes, RGS19 and KPTN, lend 
support to our TWAS findings and provide strong evidence 
for their role in lipid metabolism. Thus, our study created 
a set of gene-centered and tissue-annotated associations for 
CAD, providing insightful guidance for further biological 
investigation and therapeutic development.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00395- 022- 00917-8.
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